Propylene Glycol

Applications

45% of propylene glycol produced is used as chemical feedstock for the production of unsaturated polyester resins. In this regard, propylene glycol reacts with a mixture of unsaturated maleic anhydride and isophthalic acid to give a copolymer. This partially unsaturated polymer undergoes further crosslinking to yield thermoset plastics. Related to this application, propylene glycol reacts with propylene oxide to give oligomers and polymers that are used to produce polyurethanes.

Propylene glycol is considered generally recognized as safe (GRAS) by the U.S. Food and Drug Administration, and it is used as an humectant (E1520), solvent, and preservative in food and for tobacco products, as well as being one of the major ingredients of the "e-liquid" used in electronic cigarettes along with vegetable glycerin. Vaporizers used for delivery of pharmaceuticals or personal care products often include propylene glycol among the ingredients they are filled with. Propylene glycol is used as a solvent in many pharmaceuticals, including oral, injectable and topical formulations, such as for diazepam and lorazepam which are insoluble in water.

Like ethylene glycol, propylene glycol is able to lower the freezing point of water, and so it is used as aircraft de-icing fluid. Water-propylene glycol mixtures dyed pink to indicate the mixture is relatively nontoxic are sold under the name of RV or marine antifreeze. Propylene glycol is frequently used as a substitute for ethylene glycol in low toxicity, environmentally friendly automotive antifreeze (such as Sierra, Prestone Low Tox, and Texaco PG). It is also used to winterize the plumbing systems in vacant structures. The eutectic composition/temperature is 60:40 propylene glycol:water/-60 °C. The −50 °F/−45 °C commercial product is, however, water rich; a typical formulation is 40:60.

​Propylene glycol is a minor ingredient in the oil dispersant Corexit, which was used in during the cleanup of the Deepwater Horizon oil spill.

Propylene glycol is used in veterinary medicine as an oral treatment for hyperketonaemia in ruminants. Glucose, which can be used in non-ruminants for this purpose, is not effective due to its consumption by the resident microbes of the rumen. Propylene glycol is partially metabolized in the rumen to propionate which can be used as an energy source. The remainder is absorbed into the bloodstream and used by the liver for gluconeogenesis.

Chemical Place